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ABSTRACT

Spectral (frequency-domain) analysis is used for quantitative confirmation of cyclicity in climate-proxy data. Cy-
clostratigraphic power spectra are typically accompanied by ‘confidence limits’, whether or not a statistical test has 
been explicitly invoked. Peaks in spectral power suggest candidate cyclic frequencies; confidence limits (CLs) appear 
to provide a visual guide to their relative importance, and are conventionally used in a correspondingly informal way. 
Confidence limits are, however, inseparable from formal tests of statistical significance; they derive from a statistical 
null hypothesis, and provide a threshold for its acceptance or rejection. In the procedure conventionally used in cy-
clostratigraphy (and implemented in several specialised software packages), noise models and confidence limits are 
generated automatically. Although the user may be unaware of it, the null hypothesis on which these CLs are based is 
calibrated for a (confirmatory) test of significance at exactly one frequency. Extending their application to an explora-
tory search of spectral peaks at all frequencies is statistically inadmissible. Debate over the role and correct calculation 
of CLs in cyclostratigraphy remains unresolved: this contribution seeks to clarify the disagreement over their use by 
explaining the role of CLs in statistical significance tests generally, and comparing it with their conventional use in 
cyclostratigraphy. Through examples of the correct and incorrect use of the conventional method, I show that the 
customary informal use of statistical test criteria cannot be sustained. Significance thresholds cannot be calculated in 
most cases; wrongly estimated confidence limits lead to false positive cycle identifications, with adverse consequenc-
es for calibration of the geological time scale.

 Keywords: cyclostratigraphy, spectral analysis, confidence limits, null hypothesis.

Confianza perdida: límites a la inferencia estadística en cicloestratigrafía

RESUMEN

El anàlisis espectral (dominio de la frecuencia) es utilizado para la confirmación cuantitativa de la presencia de ciclici-
dad en datos climáticos o un indicador indirecto (proxy). Los espectros de potencia en cicloestratigrafía están típica-
mente acompañados por ‘límites de confianza’, independientemente de que se haya invocado o no, explícitamente, 
un test estadístico. Picos en el espectro de potencia sugieren frecuencias candidatas a mostrar ciclicidad; los límites 
de confianza (CLs) parecen proporcionar una guía visual a su importancia relativa, y son usados convencionalmente 
de un modo informal. Sin embargo, los límites de confianza son inseparables de test estrictos de significación esta-
dística; derivando de una hipótesis estadística nula, y proporcionan un umbral para su aceptación o rechazo. En el 
procedimento que es utilizado convencionalmente en cicloestratigrafía (y que está implementeado en paquetes infor-
máticos especializados), se generan de modo automático modelos para el ruido y los límites de confianza. Aunque el 
usuario puede no ser consciente de ello, la hipótesis nula sobre la que estos CLs están basados está calibrada para 
un test de confianza confirmatorio a exactamente una frecuencia. La extensión de su aplicación a una búsqueda ex-
ploratoria de los picos espectrales en todas las frecuencias es estadísticamente inadmisible. El debate sobre el papel 
y el cálculo correcto de los CLs en cicloestratigrafía no ha sido todavía resuelto: esta contribución pretende clarificar 
el desacuerdo sobre su uso mediante la explicación del papel de los CLs en los test de significación estadística en 
general, y su comparación con su uso convencional en cicloestratigrafía. A través de ejemplos sobre el uso correcto e 
incorrecto del método convencional, se muestra que el uso informal acostumbrado de los criterios de test estadístico 
no se sostienen. En la mayoría de los casos no se pueden calcular umbrales de significación; la estimación errónea 
de los límites de confianza conduce a la identificados de ciclos que son falsos positivos, con consecuencias adversas 
para la calibración de la escala de tiempo geológico. 

Palabras clave: cicloestratigrafía, análisis espectral, límites de confianza, hipótesis nula.
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Introduction

Power spectral analysis is much used in cyclostra-
tigraphy, where stratification cycles are predicted to 
encode orbital forcing. This paper concerns the use, 
misuse, and non-use of the statistical test criteria that 
are routinely plotted with power spectra; I suggest 
that their validity is far more limited than is suggest-
ed by their widespread use in practice.

Walther Schwarzacher (e.g. Schwarzacher 1975, 
Chapter 8) was an early pioneer both of spectral anal-
ysis, and of the use of statistics to test the relative sig-
nificance of power spectral peaks. Later, a key devel-
opment was the introduction of a particular approach 
to the estimation of spectral background (‘noise’) by 
Mann and Lees (1996; ML96). Although the context of 
their work was climate science, their ‘robust’ method 
was judged to be appropriate for application in cy-
clostratigraphy. 

ML96 quickly became the method of choice for 
power spectral analysis in cyclostratigraphy, becom-
ing embedded in specialised software packages such 
as SSA-MTM (http://research.atmos.ucla.edu/tcd/
ssa/) and Astrochron (Meyers, 2019a). Although oth-
er approaches continued (and continue) to be tried, 
ML96 remains the foundation of what I refer to here 
as the ‘conventional’ procedure in cyclostratigraphy, 
regarded by many as this discipline’s default means 
of conducting spectral analysis.

Vaughan, Bailey and Smith (2011) investigated the 
statistical features of this conventional method, and 
found two important sources of false positive results, 
also known as Type I errors. (1) It assumes that a sin-
gle class of noise model can be applied to all data-
sets; and (2) the widespread misunderstanding that 
the confidence limits it calculates can be used to test 
for significance at multiple spectral frequencies. 

A series of critical discussion papers followed, in 
which these findings were applied to a number of 
studies, for which corrected test criteria were pro-
posed (Smith, Bailey and Vaughan 2016; Smith and 
Bailey 2017a,b; Smith and Bailey 2018a, b, c; Smith, 
2019). These corrections were dismissed, essentially 
on grounds of the irrelevance of statistical rigour to 
cyclostratigraphy, and confirmed a lack of interest in 
engaging with the statistical issues (Hinnov, Wu and 
Fang 2016; Andrews, Cornwell, Trewin et al. 2018; Thi-
bault and Perdiou 2018; Hinnov, Ruhl and Hesselbo 
2018; Howe, Corcoran, Longstaffe et al. 2018; Gong 
and Kodama 2018; Da Silva, Dekkers, De Vleeschou-
wer et al. 2019).

As the criticisms by Vaughan, Bailey and Smith 
(2011) remain technically correct, it follows that there 
is a major difference of opinion concerning the way 

that statistical criteria are applied in cyclostratigra-
phy. I explore this controversy by focussing on the 
differences between what the conventional method 
really does, and how it is widely applied in practice. It 
is important to note that it is the statistics that is the 
subject of my criticism, and not cyclostratigraphy in 
general.

This paper is organised as follows – note that the 
principal arguments can be followed through the 
figures and their captions, as well as through the 
text. I first (Figure 1) use a synthetic dataset to show 
how the conventional method identifies non-existent 
cycle-periods in random data. Recognising statistical 
multiplicity as an important source of false positives, 
I use dice to illustrate this concept (Figure 2). Figure 3 
presents an example of the correct, single-frequency 
application of a conventionally calculated confidence 
limit using the familiar example of sunspot numbers. 
Figure 4 shows the conventional extension of a CL to 
multiple frequencies in a power spectrum of climate 
data, with misleading results. In Figures 5 and 6, 
corrections for statistical multiplicity allow both the 
random dataset (Figure 1) and the climate dataset 
(Figure 4) to be interrogated for statistical significance 
at multiple frequencies. Figure 7 contrasts two 
different analyses of a cyclostratigraphic dataset, one 
using the conventional – informal – approach, the 
other using corrected statistical criteria. I then discuss 
the problems raised by these examples in terms of 
the role of hypotheses, the useful distinction between 
exploratory and confirmatory modes of data analysis, 
and the recognition, sources, and impact of statistical 
multiplicity in cyclostratigraphy, before concluding 
with some recommendations for future practice.

Confidence limits in cyclostratigraphy 

Power spectra are the standard means of evaluating 
the frequency-domain properties of a data-series. In 
cyclostratigraphy, the plots of many such power spec-
tra also include statistical test criteria in the form of a 
‘noise model’ and/or ‘confidence limits’; these features 
are present mainly because the conventional proce-
dure (and its implementation in software toolkits) inte-
grates their calculation with that of the spectrum. 

The conventional procedure thus generates a 
noise model/confidence limit whether or not it is the 
intention to conduct a statistical test; this is a key crit-
icism in this paper. In most cases, all that is actually 
needed in the initial, exploratory phase of data anal-
ysis is a power spectrum; hypothesis-confirmation 
through statistics is rarely relevant, appropriate, or 
even possible at this stage of an investigation.
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In statistical terms, exploratory data analysis 
(EDA) describes an initial phase of wide-ranging and 
open-ended exploration of the properties of a new-
ly collected dataset, in a general search for patterns 
such as cycles. EDA leads to the erection of specific 
hypotheses, for statistical testing in the subsequent, 
confirmatory (CDA) stage of analysis, which is ide-
ally conducted on an independent, freshly collected 
dataset. The pragmatic distinction between explora-
tory and confirmatory data analysis was introduced 
by Tukey (1977), and provides a useful framework for 
understanding the current ‘crisis of confidence’ in cy-
clostratigraphy.

A test of statistical significance (Vaughan 2013, 
Chapter 7) requires a null hypothesis (NH), which 
is usually that the data are random. If the chosen 
significance threshold is not reached, the NH pro-
vides the default conclusion: the data are random, 
and the hypothesis that a pattern (cycle) exists is 
not supported. Positive statistical support for the 
hypothesised effect requires the null hypothesis to 
be rejected.

For any quantitative test, the null hypothesis needs 
numerical expression; this is the function of the noise 
model, which is estimated from the power spectrum; 
it is usually plotted as a continuous function. Noise 
estimation is achieved either through some empirical 
best-fit procedure (Vaughan, Bailey and Smith, 2011; 
Weedon, this volume), or by fitting to some preferred 
template. The latter is the case in the Mann and Lees 
(1996, ML96) approach, where the noise is required 
to take the form of a first-order autoregressive (AR1) 
process.

Although usually depicted as continuous, the 
noise model is in fact discrete, being estimated at 
each of the N/2 frequencies at which spectral power 
is calculated (N is the number of points in the origi-
nal data-series). Although usually represented by a 
single value at each frequency, the model is in fact a 
probability density function (PDF), such as a Gaussi-
an distribution. The line generally used to represent 
the noise model (the blue line on Figure 1, for exam-
ple) connects the median values of the model PDFs, 
of which there is one at each of the N/2 frequencies. 

The confidence limits (CLs) also connect points on 
the noise PDFs at each frequency, but above the me-
dian, such that (for example) only 5% of each PDF’s 
values lie above the 95% CL. This provides a (user-de-
fined) threshold for testing the significance of spectral 
power at some frequency, and hence for either accept-
ing or rejecting the null hypothesis at that frequency.

My objective here is to show that the confidence 
limits that are generated automatically by the conven-
tional procedure are not fit for the purpose that their 

presence implies. In EDA/CDA terms, any confidence 
limit is integral to a confirmatory test of statistical 
significance, and has no meaning outside that con-
text. Conventional practice, however, is to treat CLs 
as an exploratory tool, as a context-free guide, and as 
only one of several criteria available for open-ended 
exploration of the data.

Statistical testing is generally inapplicable to the 
exploratory stage of analysis, because the open-end-
ed nature of EDA entails too many scenarios, a prob-
lem known as statistical multiplicity (discussed in 
more detail below). Statistical tests are appropriate 
in confirmatory analysis to the extent that the range 
of scenarios can be restricted and quantified. Con-
ventional usage in cyclostratigraphy effectively ap-
plies confirmatory significance testing in an explora-
tory environment, with the unavoidable result that a 
high degree of statistical multiplicity downgrades the 
reliability of the confidence limits.

I now use examples to demonstrate how this ex-
ploratory abuse of confidence limits leads to false 
positive results, and how they can be corrected for 
their proper, confirmatory use. 

The conventional procedure: false positive cycles in 
random data

In this paper, the ‘conventional approach’ to spectral 
analysis in cyclostratigraphy refers to the simultane-
ous calculation of a power spectrum, a default noise 
model, and one or more confidence limits (CLs), 
based on the method introduced by Mann and Lees 
(1996), and usually through use of a specialist soft-
ware package. Here, I use a synthetic dataset to intro-
duce a typical spectrogram on which spectrum, noise 
and CL are superimposed. Note that this example is 
also typical in that the noise model and CL have no 
explicit purpose; the reader is left to infer that the 
plot is for general illustration of the data in the fre-
quency-domain. [Figure 1]

Figure 1 plots the conventional analysis of a 
1024-point simulated data-series (Figure 1A) us-
ing a widely available software package (see figure 
caption for details); the procedures used for the real 
datasets in Figures 3 to 7 were essentially the same, 
with minor modifications that are explained in the 
relevant text and figure captions. All spectrograms in 
this paper are plotted against both log-log and line-
ar-linear axes. A linear frequency axis is often pre-
ferred in cyclostratigraphic studies, but log-log plots 
are essential for viewing the whole frequency range, 
particularly when comparing the modelled spectral 
background with the spectrum of the data.
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Figure 1B/C represents the output of the all-in-one 
function mtmML96 in the Astrochron software package 
(Meyers, 2019a). This (and equivalent functions in other 
packages) applies (1) the MTM (Thomson’s multi-taper) 
method to generate the power spectrum; and (2) the 
‘robust’ noise modelling method of Mann and Lees 
(1996; ML96) to estimate the spectral background and 
hence one or more confidence limits. For clarity in this 
and other figures, I plot only a single CL.

In Figure 1B/C, the 95% confidence limit (CL) inter-
sects the power spectrum at a number of local peaks, 
thus defining frequencies at which the spectrum lies 
above the confidence limit (Power>CL). What are the 
implications of this: are the data to be interpreted as cy-
clic at those frequencies, ‘with 95% confidence’? If not, 
what is the function of the confidence limit? (Recall the 
absence of any stated objective or hypothesis.)

The dataset in this example is in fact random; it is 
a realisation of a simple autocorrelative process (see 
figure caption for details) and is therefore not period-

ic at any frequency. The conventional procedure has 
therefore generated a plot whose face-value interpre-
tation is unambiguously misleading; the frequencies 
that it identifies as significant (and hence cyclic) are 
all false positives. The procedure’s arithmetic correctly 
replicates the ML96 method, which is itself technically 
correct, yet this standardised calculation has led to a 
misleading juxtaposition of a confidence limit and the 
data’s power spectrum; it has found cycles that do not 
exist in the data. 

ML96 is primarily a method for estimating back-
ground noise from a power spectrum, a necessary 
step towards a statistical significance test. However, 
ML96 has come to be used as the default method for 
calculating the power spectrum, whether or not there 
is any intention of using statistics. In the random ex-
ample above, no objective for Figure 1B/C was stated; I 
declared neither a scientific hypothesis nor a statistical 
null hypothesis. In such a lack of context, the functions 
of the noise model and CL are necessarily ambiguous. 

Figure 1. False positive cycles in random data: conventional spectrogram with hypothesis-free noise model and confidence limits. 
Figura 1. Falsos positivos de ciclos en datos aleatorios: espectrograma convencional con un modelo de ruido y límites de confianza sin 
hipótesis preconcebidas.
An exploratory search of a conventionally calculated power spectrum finds significant cycle-periods in random data, because the confidence 
limit (CL) is correct only for a test at a single frequency. Chance dictates that Power>CL at a number of frequencies, just as a throw of many 
dice is likely to include a number of sixes (Figure 2). Figure 6 shows how to control the false positive rate for this dataset.
A: 1024-point realisation of first-order autoregressive (AR1) random process, using the ar1 function in Astrochron (Meyers, 2019a), with au-
tocorrelation coefficient ρ = 0.7. 
B, C: MTM spectral analysis (3 tapers), with ‘robust’ AR1 noise model and CL, all calculated together using Astrochron function mtmML96; 
results exported to Excel for plotting. B and C are identical except for their axes: log-log in B, bi-linear in C. 
Colour conventions (all figures): blue=noise model (spectral background); red=uncorrected confidence limit (CL); green=corrected CL.
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Statistical test criteria, including confidence lim-
its, can only be based on a null hypothesis. Given 
that a noise model and CLs appear in Figure 1B/C, 
what is the implied null hypothesis; and why are false 
positive cycles identified when the CL in Figure 1B/C 
is used to search for significant frequencies?

ML96 correctly calculates a confidence threshold 
for a test of spectral power. The source of ambigu-
ity is that this test of significance is correct only if 
applied at exactly one frequency. Such a single-fre-
quency test is achievable only if that frequency can 
be specified in advance, but this is very rarely possi-
ble in cyclostratigraphy (see Figures 3 and 4 for ex-
amples where it is possible to use ML96 uncorrected).

Thus, Figure 1 is misleading because it appears 
to provide a significance test that is applicable at all 
frequencies, yet the significance threshold (the CL) 
is calibrated for such a test at only one frequency. 

The critical, seldom acknowledged factor in this is 
statistical multiplicity: a concept that I now introduce 
through a familiar example, before applying the con-
ventional procedure to an explicitly single-test exam-
ple.

Statistical multiplicity: a simple analogy 

I introduced statistical multiplicity above in the con-
text of the distinction between exploratory and con-
firmatory data analysis; it is one of the two sources 
of false positives identified by Vaughan, Bailey and 
Smith (2011); and it is central to the difference of 
opinion over strict versus permissive use of confi-
dence limits. [Figure 2]
 Statistical multiplicity is the effect of multiple simul-
taneous (or repeated) applications of a significance 
test. Often unrecognised, it will always – if uncorrect-

Figure 2. Statistical multiplicity: many dice, many sixes.
Figura 2. Multiplicidad estadística: muchos datos, muchos seises. 
In this analogy, the frequencies in Figure 1B/C are represented by dice; the single-test confidence limit (the red line in Figure 1) is represent-
ed by the assumption that the overall probability of seeing a six is 1:6, as it is for a single die. Multiplicity (throwing many dice) raises the 
probability of seeing a six; the sixes seen here are the product of chance, as are the peaks in spectral power in Figure 1.
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Figure 3. Single-frequency, hypothesis-based significance test: correct use of conventional method (sunspot numbers). 
Figura 3. Para una única frecuencia, test de significación basado en hipótesis: uso correcto del método convencional (número de manchas 
solares).
In cyclostratigraphy, the conventional procedure generates statistical criteria (noise model and confidence threshold) for a significance test 
at a single frequency. Here, such a test is (correctly) applied to confirm 11-year cyclicity in sunspot numbers; the confidence interval (CI, 
vertical bar) is applied only at the test frequency. At this frequency, Power>>CI, and the (random) null hypothesis is rejected: the hypothe-
sised 11-year cycle is confirmed.
A: Monthly sunspot numbers, 1749-2018 (source: WDC-SILSO, Royal Observatory of Belgium, Brussels). 
B, C: Log-log and linear-axis spectrogram plots calculated using Astrochron function mtmML96 modified to apply a power-law noise 
model, which is a better fit (RMS error = 14.61) to the data’s spectrum than the default AR1 model (RMS=17.68). The ‘robust’ noise model 
was used to estimate a 99% confidence interval (vertical green bar) at the single frequency (0.0909 cycles/yr) corresponding to the test 
wavelength (11 years). 

ed – affect the reliability of a statistical test. As an 
analogy, consider throwing several dice (Figure 2) 
while maintaining the expectation that a six will be 
seen only on one in every six throws. While this 1:6 
expectation is true for any one throw of a single die, 
it is no longer true when the number of dice thrown 
is increased. The greater the number of dice, the less 
likely it is that a multiple throw will not include a six.

Similarly, in performing a statistical test, the false 
positive rate (e.g. 5%) may be small for a single test, 
but multiple repeats of the test provides multiple op-
portunities for a false positive result: the sixes in Fig-
ure 2 are the product of chance, and are analogous to 
the frequencies at which Power>CL in Figure 1. 

Applying the single-die expectation to a multiple 

dice throw is misleading; it might, for example, lead 
to a conclusion that the dice are biased. Unmediated 
use of the conventional (ML96) power spectral cal-
culation in cyclostratigraphy automatically supplies 
a single-test confidence threshold; if applied at mul-
tiple frequencies, false positive cycle identifications 
will be the result. This is why Figure 1 appears to in-
dicate that this random dataset is cyclic at a number 
of frequencies.

For the dice, correcting the expectation can be 
done in two ways. Either, (1) by specifying in advance 
which individual die we are considering (in which 
case the chance of a six remains at 1:6). Or, (2) by ad-
justing the 1:6 single-die expectation to allow for the 
total number of dice cast. The options for correcting 
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statistical tests in cyclostratigraphy are analogous: 
either, (1) specify in advance at which frequency the 
spectral power is to be tested; or, (2) adjust the confi-
dence threshold to allow for the number of times the 
significance test is to be applied. 

Naïve application of uncorrected ML96 criteria at 
multiple frequencies can only result in multiple false 
positives, as in Figure 1. The ML96 single-test confi-
dence limit can however be used, without correction, 
in an appropriate situation, and this is illustrated in 
the following section.

Conventional method: application at a single fre-
quency

In section 3 and Figure 1, above, I showed how the 
customary absence of any stated objective invites 
misuse of the conventionally calculated confidence 
limit(s). Here I show how the ML96 procedure is cor-
rectly used, without any need for modification, for 
testing an explicit hypothesis at a single frequency. 
The target frequency here (0.0909 cycles per year) is 
the 11-year sunspot cycle. 

To illustrate the principle, I first use the conven-
tional method to test the power spectrum of the sun-
spot numbers themselves. The null hypothesis is that 
spectral power at F=0.0909 cycles/year fits a random 
model of the noise background at some user-defined 
confidence threshold; the null hypothesis applies 
only at that one frequency. [Figure 3]

Figure 3A shows historical monthly sunspot num-
bers from 1749 to 2018. Figure 3B/C presents the 
output from the conventional (cyclostratigraphic) 
procedure, again using the Astrochron package for 
simultaneous calculation of MTM power spectrum, 
‘robust’ spectral background, and a single (95%) con-
fidence limit. (See figure caption for further details; 
note that it was necessary to modify the mtmML96 
function to substitute a simple power law for the de-
fault AR1 noise model, which is a poor fit in this case. 
See Vaughan, Bailey and Smith (2011, Appendix B2) 
for the appropriate equation, and for further advice 
on fitting alternative noise models.)

In contrast to the multi-frequency search for sig-
nificant peaks in Figure 1, a significance test is nec-
essary at exactly one frequency in the sunspot spec-
trum; I have used a CL of 99% in this case. Figure 3B/C 
therefore shows the calculated confidence threshold 
only at F=0.0909, in the form of a confidence interval, 
a vertical bar connecting the noise median and the 
99% confidence level at that frequency (see Weedon 
2003, Figure 3.26 for another example). 

At this frequency, the data’s spectral power far 

exceeds the 99% CL (Power>>CL), and the null hy-
pothesis (of randomness at that frequency) can be 
very confidently rejected; this in turn confirms the 
scientific hypothesis that sunspot numbers vary on 
an 11-year cycle.

The same test is now applied to a historical cli-
mate data-series, the (annual) Central England Tem-
perature record (Figure 4A: details in caption). The 
hypothesis to be tested is the same: that there is sig-
nificant cyclicity at a wavelength of exactly 11 years; 
the statistical test likewise starts from a null hypothe-
sis of no cyclicity at that frequency. [Figure 4]

Figure 4B/C plots the results of the Astrochron cal-
culation of a power spectrum, a ‘robust’ noise model, 
and a 95% confidence estimate for the annual CET 
data. (A power law model again provided a better fit 
than the default AR1 model – see caption.) The confi-
dence interval (vertical green bar) is again shown at 
the sunspot frequency, F=0.0909 cycles/yr.

Spectral power at this frequency clearly falls 
short of the CL (Power<<CL): the null hypothesis is 
therefore accepted, with the conclusion that spectral 
power at this frequency is random. The (scientific) hy-
pothesis is thus not confirmed: this dataset does not 
show any influence by the sunspot cycle. 

However, the conventional ML96 calculation pro-
vides an apparently continuous ‘confidence limit’ 
across the entire frequency range (dashed red line 
in Figure 4B/C), and, as in Figure 1, this CL intersects 
the spectrum to define apparently significant peaks 
in spectral power at several (non-sunspot) frequen-
cies. Is the CET dataset therefore cyclic at these fre-
quencies?

Calculating and plotting a single-frequency test 
threshold at many frequencies is equivalent to throw-
ing many dice: the frequencies at which Power>CL in 
Figure 4B/C are analogous to the sixes in Figure 2: 
they are the result of chance. Multiple repetition of 
the single-frequency test at many frequencies sim-
ply multiplies the likelihood of chance occurrence of 
some of the more extreme values in the noise mod-
el’s probability distribution.

If the power spectrum of the CET data is to be in-
spected for possible cyclicity at all frequencies, the 
test threshold must be raised, to correct for the effect 
of statistical multiplicity; this is not optional, but is a 
straightforward arithmetical requirement of the sta-
tistical test. I now review the approach to such mul-
ti-frequency corrections that was introduced to cy-
clostratigraphy by Vaughan, Bailey and Smith (2011), 
and apply it both to the CET case, and to the random 
example of Figure 1.
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Multiplicity: correcting for multi-frequency searches

The chance of throwing a six with a single die is 1 in 
6 (16.7%); for two dice thrown together it is 11 in 36 
(30.5%); the probability of seeing at least one six contin-
ues to increase rapidly with the number of dice. For the 
multiple throw illustrated in Figure 2, it is very unlikely 
that there will not be a six. Similarly, any uncorrected 
multi-frequency analysis of a random dataset (e.g. Fig-
ure 1) is very likely to include spectral peaks that exceed 
a single-test significance threshold by chance alone. 

Posting ‘95% confidence’ on a spectrogram sug-
gests (qualitatively) a reassuring level of reliability; 
quantitatively, it predicts a false positive result (Type I 
error) for only one case in every twenty. The question of 
multiplicity in cyclostratigraphy turns on what is meant 
by ‘a case’.

In Figures 3 and 4, the conventional procedure was 
shown to work correctly for a test of significance at a 

Figure 4. Incorrect extension of conventional single-frequency CL to all frequencies (CET data). 
Figura 4. Extensión incorrecta del nivel de confianza convencional para una única frecuencia a todas las frecuencias (datos CET).
The conventional cyclostratigraphic procedure is used here to test a climate data-series for significance at the sunspot-cycle frequency 
(green vertical bar). At this frequency, Power<<CL, so the null hypothesis is accepted, the data are random at this frequency, and the hy-
pothesised influence of the sunspot cycle is not confirmed. Although there is no 11-year cyclicity, the single-frequency test, conventionally 
plotted across all frequencies (red dashed line), finds Power>CL at several other frequencies. This is, however, misleading; Figure 5 shows 
that an appropriately corrected CL finds no such cycle-periods.
A: Central England Temperature (CET) record, 1659-2017, annual values (source: Met Office (UK) Hadley Centre for Climate Change). 
B, C: Log-log and linear-axis spectrograms showing spectral power, ‘robust’ power-law spectral background and a 95% Confidence Inter-
val (green vertical bar) at 0.0909 cycles/year, all calculated simultaneously using modified Astrochron function mtmML96, as for Figure 3. 
Dashed red line is the conventional 95% CL, which falsely suggests significance at other frequencies where Power>CL. Power law (RMS 
error 3.73) is a better fit to the data’s spectrum than the default AR1 model (RMS=4.01).

single frequency. The use of the 95% CL implies accept-
ance of a Type I error for one in twenty such tests; that 
is, one Type I error is predicted for similar analyses of 
twenty datasets: the case is the dataset. Where multiple 
tests are applied (or implied, as in Figure 1) within a 
single spectrogram, each frequency is a case.

The 5% false positive (FP) rate implied by a 95% CL 
suggests a high level of reliability; a risk of Type I er-
rors occurring in only 1 in 20 spectrograms seems very 
acceptable. For the conventional (ML96) single-test CL, 
however, false positives are predicted at 1 in 20 fre-
quencies. Bearing in mind the dice analogy, intuition 
suggests that the expected FP rate should be adjusted, 
such that the 1:20 FP rate applies to the whole spectro-
gram, instead of per frequency. 

For the 1024-pt random dataset of Figure 1, a search 
for all frequencies at which Power>CL requires a null 
hypothesis significance test at all N/2=512 frequencies. 
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On average, the single-test 95% CL will be exceeded by 
chance at 5% of all frequencies, i.e. at 25.6 frequencies. 
This prediction adequately explains the number of fre-
quencies at which Power>CL in Figure 1. Just as for the 
sixes that appear on the dice in Figure 2, there is no 
reason to invoke any explanation other than chance. 

To convert the false positive (FP) rate to apply to the 
whole spectrogram, the Bonferroni Correction was rec-
ommended by Vaughan et al. (2011). The desired ‘glob-
al’ (spectrogram-wide) FP rate is divided by the number 
of frequencies in the spectrum to give the corrected 
‘local’ (single-test, single frequency) FP rate. For 
the spectrogram in Figure 1, a 5% global FP rate is 
achieved by dividing 0.05 by 512, giving a correct-
ed single-test FP rate of 0.0000977, and a confidence 
level of 99.99%. (While such a threshold may seem 
unreasonably high, it is only a simple consequence 
of the arithmetic of probability.) 

Thus, for a simultaneous test at all 512 frequencies 
that will yield a false positive result for only 5% of all 
similar spectrograms, the (local) confidence level need-
ed is 99.99%. This has been calculated for the Figure 1 
example, as shown in Figure 5A/B. Assuming that the 
question was “Are there any frequencies at which Pow-
er>CL?”, this revised CL gives the correct answer: there 
are no frequencies at which Power>CL. [Figure 5]

Figure 6A/B shows a similar correction for inter-
rogating the CET spectrum at all frequencies. Spec-
tral power does not intersect the corrected CL (green 
line) anywhere; the result is to rule out cyclicity at any 
frequency in this dataset (see the figure caption for 
more detail). [Figure 6]

Finally, it should be noted that correcting a sin-
gle-test CL for multi-frequency application is not op-
tional; it is a straightforward requirement of the sta-
tistical arithmetic. Arguments that such corrections 
are either irrelevant in cyclostratigraphy, or that they 
are unnecessarily ‘extreme’ (e.g. Hinnov, Wu and Fang 
2016), stem from the conventionally casual use of con-
fidence limits, which is exemplified in the following 
case study. 

A case study: are confidence limits tests or guides, 
mandatory or optional?

I now turn to a recent cyclostratigraphic study (Ruhl, 
Hesselbo, Hinnov et al. 2016), in which the convention-
al procedure was used to analyse data-series from a 
rhythmically-bedded succession. CLs were calculat-
ed and displayed in this study, but contributed little 
to its conclusions. The subsequent Comment/Reply 
exchange (Smith and Bailey 2018a; Hinnov, Ruhl and 

Figure 5. Correcting conventional CL for multi-frequency search (random data; compare Figure 1).
Figura 5. Corrección del nivel de confianza convencional para búsqueda de múltiples frecuencias (datos aleatorios, comparar con la Figura 1).
Correction of the conventional single-test 95% confidence limit in Figure 1 allows it to be used for a multi-frequency search of the spectro-
gram. For the search implied in Figure 1B/C, the false positive rate must be adjusted so as to apply to the entire spectrogram. Here, using 
the Bonferroni correction, the 1:20 false positive rate was divided by 512, the number of frequencies in the spectrogram. The corrected 95% 
‘global’ CL is shown in green. There is now no frequency at which PS>CL; the revised null hypothesis (of randomness at all frequencies) can 
be accepted, and the data are correctly confirmed as non-periodic.
A, B: As Figure 1: dashed red line is the conventional (local, i.e. single-test) 95% CL, equivalent to calculating the single-test confidence 
interval for all frequencies. Green line provides a ‘global’ 95% CL such that false positives will occur once in every 20 similar spectrograms; 
this is achieved by setting the ‘local’ (single-frequency) test threshold to 99.99%.
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Hesselbo 2018) illustrates the difference of opinion 
(central to the present paper) over the validity and ap-
plication of confidence limits. [Figure 7]

 I refer to the dataset analysed in Figure 4B of Ruhl, 
Hesselbo, Hinnov et al. (2016, Supplementary Ma-
terial), but solely in order to explore the question of 
statistical testing as evidenced in that figure; I am not 
concerned here with the original authors’ subsequent 
application of their orbital-cycle picks to ‘tuning’ and 
hence to timescale calibration. Brief details of the data 
and analyses can be found in the caption, and in the 
papers cited above.

The succession oscillates more or less rhythmically 
between two different lithofacies to form primary, me-
tre-scale bedding couplets. Based on their visual ob-
servations of the borehole core, Ruhl, Hesselbo, Hin-
nov et al. (2016) proposed that these primary rhythms 
are organised into bundles of 4-5 couplets, and these 
into super-bundles, making a case for identifying 
these three orders of cyclicity with orbital precession, 
short eccentricity, and long eccentricity. 

XRF-compositional data-series from the core ‘were 
analysed with the 3π multi-taper method (MTM) using 
the Astrochron toolkit …, with robust red noise mod-
els (Mann and Lees, 1996) …’ (Ruhl, Hesselbo, Hinnov 
et al. 2016, section 5.3; my italics). This description of 
their analytical procedure, though extremely brief, is 
sufficient to identify it as describing unmediated ap-
plication of the conventional approach. Note that the 
presentation in their Figure 4B is unconventional: the 
usual (AR1) noise model appears (red line) in their up-

per panel, and the confidence limits in the middle pan-
el, where they are used as the graph’s vertical scale. 
Their analysis was conducted in the usual hypothe-
sis-free (exploratory) mode. 

Figure 7B/C uses a more conventional presentation 
to show the same ‘black box’ calculation of the power 
spectrum with default AR1 noise model, and a single 
confidence limit (see figure caption for more detail). 
Simple visual inspection reveals numerous frequen-
cies at which Power>CL; compare Figure 1.

Ruhl, Hesselbo, Hinnov et al. (2016) were able to 
find spectral peaks at frequencies approximating 
those from their semi-quantitative visual observa-
tions of the core, but this set of frequencies has little 
in common with those for which Power>CL. That is, 
their preferred interpretation of the power spectrum 
largely ignores the statistical criteria. The frequencies 
selected by Ruhl, Hesselbo, Hinnov et al. (2016) are 
labelled (by wavelength) in Figure 7D/E. 

In their discussion of this study, Smith and Bailey 
(2018a) took the statistical criteria at face value; they as-
sumed that the noise model and confidence limits ex-
press a formal test of statistical significance. Although 
no objective for such a test was stated, the appearance 
of CLs suggests something more than a simple display 
of the power spectrum: an invitation to search the spec-
trum for significant frequencies. Multiplicity is therefore 
implied, and requires correction. Following Vaughan, 
Bailey and Smith (2011), Smith and Bailey (2018a) first 
applied a better-fitting noise model (to control that 
source of false positives), then elevated the (local) con-

Figure 6. Correcting conventional CL for multi-frequency search (CET data; compare Figure 4).
Figura 6. Corrección del nivel de confianza convencional para búsqueda de múltiples frecuencias (datos CET, comparar con la Figura 4).
Correction of the conventional single-test 95% confidence limit in Figure 4 allows it to be used for a multi-frequency search of the spec-
trogram. For the search implied by the all-frequency extension of the single-test CL (red dashed line in Figure 4B/C), the false positive rate 
must be adjusted so as to apply to the entire spectrogram. Here, using the Bonferroni correction, the 1:20 false positive rate was divided by 
179, the number of frequencies in the spectrogram. The corrected 95% ‘global’ CL is shown in green. There is now no frequency at which 
PS>CL; the revised null hypothesis (of randomness at all frequencies) can be accepted, with the conclusion that the data are non-periodic.
A, B: As Figure 4: dashed red line is the conventional 95% CL, the single-test confidence threshold calculated for all frequencies. The green 
line provides a corrected, ‘global’ 95% CL such that false positives will occur only once in every 20 similar spectrograms; this is achieved
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Figure 7. Conventional and corrected use of ML96-based confidence limits (Pliensbachian, Mochras, Wales).
Figura 7. Uso convencional y uso correcto de los límites de confianza basados en ML96 (Pliensbachian, Mochras, Wales).
This figure uses a recent case study (Ruhl, Hesselbo, Hinnov et al. 2016) to compare the statistically correct application of confidence limits 
with their conventional, informal use. The automatically generated statistical criteria were technically incorrect, but did not influence the 
selection of candidate orbital frequencies, which was based on observation of stratal patterns in the sampled core. Smith and Bailey (2018a) 
corrected the statistics, confirming the existence of cyclicity, but at fewer frequencies.
A: Ca concentration data through the 422 m Pliensbachian interval, Mochras borehole, N. Wales, resampled at 0.12 m intervals (3522 points) 
and detrended as described in Smith and Bailey (2018a).
B, C: Conventional spectral analysis simulating that of the original authors, but presented in log-log and linear-axis plots to conform with the 
other spectrograms in this paper (compare Ruhl, Hesselbo, Hinnov et al. 2016, Supplementary Material Figure 4B, in which the noise model 
appears in the top panel, and the CLs in the middle panel). My analysis simulated theirs in using the all-in-one function mtmML96 for simulta-
neous calculation of power spectrum, default AR1 noise model, and default single-test CLs, of which only the 95% CL is shown here. Note that 
Power>CL at many frequencies (compare the random data case in Figure 1). 
D, E: Same as B, C, showing frequencies (labelled by wavelength) selected by the original authors; this set of frequencies is clearly not con-
strained by those at which Power>CL. 
F, G: Re-analysis by Smith and Bailey (2018a), who (a) found a better fitting noise model and (b) corrected the CL to allow it to be used for an 
all-frequency search for significant peaks with a much-reduced risk of false positives. Statistical significance (Power>CL) is attained at approx-
imately 1 m and 0.5 m wavelengths, but not elsewhere. The noise model is a bending power law (BPL, see Appendix B, Vaughan, Bailey and 
Smith 2011), with index changing from 0.0 to -2.2394 at 1.0 cycles/m; the RMS error for the AR1 model is 490; for the BPL model it is 354, a 
substantial improvement.
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fidence limit (as described in section 6 above) to correct 
for testing at multiple frequencies. Thus corrected, the 
confidence limit identifies statistically significant spec-
tral peaks, at wavelengths of ~1 m and (marginally) ~0.5 
m (Figure 7F/G, green line).

We can now compare these two different approach-
es to the power spectrum. Ruhl, Hesselbo, Hinnov et 
al. (2016) sought frequency-domain confirmation of 
the already-proposed hierarchy of stratification cy-
cles, which led them to pick the local spectral peaks 
labelled in Figure 7D/E. This required their confidence 
limits to be treated as optional and non-mandatory. 
Smith and Bailey (2018a), taking both noise and CLs 
to indicate a genuine significance test, observed that 
both had been wrongly calculated if they were to give 
statistical support to a search of the spectrum. Mak-
ing the appropriate corrections led to a result that 
was different, but which carries statistical validation. 

Given that Ruhl, Hesselbo, Hinnov et al. (2016) 
effectively ignored their own statistical criteria, the 
methodological defence by Hinnov, Ruhl and Hes-
selbo (2018, replying to Smith and Bailey 2018a) 
is largely irrelevant to this particular case study; in 
effect, they are defending the exploratory nature of 
their approach, and their perceived right to treat CLs 
as informal guides. Their reply is nevertheless of gen-
eral relevance to the wider question of how statistics 
are to be applied (if at all) to the results of spectral 
analysis in cyclostratigraphy. 

Vaughan, Bailey and Smith (2011) sought to ac-
count for the typically large numbers of cycle identifi-
cations that are implied by conventionally calculated 
CLs. They identified two sources of false positives: 
incorrect noise modelling, and failure to correct for 
multi-frequency testing. Defence of the conventional 
approach centres on the claim that it is both permis-
sible and desirable to use statistical confidence limits 
in a much less formal manner; this is used to justify 
the lax treatment of classical statistical protocols, as 
well as the optional, non-mandatory interpretation of 
the resulting CLs (Hinnov, Ruhl and Hesselbo, 2018; 
Hinnov, Wu and Fang, 2016; Hilgen, Hinnov, Aziz et 
al., 2015).

The cyclostratigraphically conventional require-
ment of the power spectrum in a study such as that of 
Ruhl, Hesselbo, Hinnov et al. (2016) is that it should 
yield peaks at frequencies that support a presuppo-
sition of orbital cyclicity. Given such a (scientific) hy-
pothesis, and the desirability of confirming it quanti-
tatively, is it not reasonable to invoke a confirmatory 
test of significance, in the form of a statistical confi-
dence limit? The problem is that statistics cannot di-
rectly test a scientific hypothesis, and indiscriminate 
posting of incorrectly calculated CLs on cyclostrati-

graphic power spectra does not provide such a test. 
Further, it must always be accepted that one possible 
outcome of a properly applied statistical test is that 
the null hypothesis might not be rejected, implying 
that the proposed cyclicity cannot be statistically 
distinguished from random noise. Ruhl, Hesselbo, 
Hinnov et al. (2016) set out to confirm core-based cy-
clicity in the Pliensbachian of Mochras, and did so to 
their satisfaction. Hinnov, Ruhl and Hesselbo (2018) 
make it clear that no confirmatory statistical testing 
could be allowed to overrule this; thus, their noise 
modelling and confidence limits did not contribute to 
their conclusions.

Discussion: missing hypotheses, multiplicity, and 
misleading confidence 

Both the random dataset (Figure 1) and the Pliens-
bachian case (Figure 7) exemplify the problem caused 
by default co-generation of a noise model and associ-
ated confidence limit(s) with every cyclostratigraphic 
power spectrum, and without any explicit scientific 
or statistical hypothesis. This practice gives the false 
impression that the CLs can be used as freestanding 
guidelines, unrestricted by the formalities of a real 
test of significance. 

The usual absence of any explicit reference to hy-
pothesis-testing conceals the key facts that (1) the 
ML96 method necessarily involves a null hypothesis, 
and (2) the resulting confidence test can be applied 
at only one frequency. Because it repeats the same 
(single-frequency) confidence calculation across 
the whole spectrum, ML96 (and its various software 
manifestations) appears to provide a valid signifi-
cance threshold at every frequency, giving rise to the 
misleading situation criticised in this paper. 

In cyclostratigraphy, tests of significance of spec-
tral power are rarely possible, largely because sta-
tistical multiplicity impedes estimation of reliable 
confidence thresholds. It was possible to apply the 
conventional ML96-based method in tests for the sun-
spot frequency (Figure 3 and 4) (a) because the target 
frequency (in cycles per year) is precisely known, and 
(b) because the datasets tested (being historical) have 
unambiguous timescales (they are true time-series, 
unlike most stratigraphic data-series). Multiplicity 
arises in significance tests of cyclostratigraphic pow-
er spectra because those conditions can only rarely 
be met, and then only for the geologically youngest 
cases. In the great majority of cases, searching spec-
tra at multiple frequencies cannot be avoided, and 
single-test CLs must be corrected accordingly; the 
alternative is to abandon statistical tests altogether.
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Two additional, largely unacknowledged and en-
tirely unresearched sources of statistical multiplicity 
apply to most studies in cyclostratigraphy: multiple 
procedural pathways, and target flexibility. Both of 
these are positive advantages in exploratory data 
analysis; but neither can be tolerated in the statistical 
test regime of confirmatory data analysis. Cyclostra-
tigraphy typically operates in exploratory mode, with 
no need either for standardised procedures or for 
advance specification of target frequencies, but it is 
not possible to invoke statistical tests and confidence 
limits in such an environment of maximum flexibility.

Procedural flexibility has been described as Re-
searcher Degrees of Freedom (Simmons, Nelson 
and Simonsohn 2011), and as the Garden of Forking 
Paths by Gelman and Loken (2014): potential analyt-
ical pathways, and hence opportunities for chance 
positive results, proliferate at every decision-point in 
the procedure. Decision points in cyclostratigraphic 
investigations include: section selection and sam-
pling strategy; data pre-processing (outlier removal, 
interpolation, detrending); choice of spectral meth-
od, software package, and parameter settings; noise 
estimation and confidence levels; plotting parame-
ters (log versus linear axes, full spectrum or partial 
frequency scale); the list is long. In the exploratory 
mode of the conventional approach it seems entirely 
reasonable to adapt the procedure to suit each indi-
vidual dataset (see the Methods section of any cy-
clostratigraphic study). This, however, implies many 
potential procedural pathways, each of which adds 
to the range of possible outcomes and therefore de-
grades confidence thresholds if confirmatory tests 
of significance are to be applied. A study by Carp 
(2012) demonstrated the complexity of trying to ad-
just statistical tests for all such sources of flexibility 
in data collection and analysis, though this was not 
in cyclostratigraphy where no such study has yet 
been undertaken. Procedural flexibility, incompatible 
with statistical testing, is essential to the exploratory 
phase of data analysis, reinforcing my view that cy-
clostratigraphic spectral analysis operates very large-
ly in exploratory mode.

Target flexibility is also desirable in exploratory 
analysis, and is also essential to conventional pro-
cedures in cyclostratigraphy; it is likewise difficult 
to reconcile with rigorous tests of significance. Con-
ventionally, the power spectrum is inspected for can-
didate frequencies, either in an entirely open-ended 
way (as simulated in Figure 1), or with the aim of 
matching visual observations to a plausible suite 
of orbital frequencies (as in the Pliensbachian case, 
Figure 7). This approach is necessary because target 
frequencies cannot be pre-specified (especially in the 

depth domain) because of time-scale uncertainties; 
this is particularly true if time-depth calibration is the 
objective of the study and circularity is to be avoided 
(Bailey 2009). Such flexibility, however, is incompat-
ible with the confirmatory analysis that is implied by 
plotting confidence limits with the power spectrum, 
because the statistics cannot cope with the inevitably 
high level of multiplicity. Retrospective target speci-
fication is a particularly rich source of statistical mul-
tiplicity, carrying the risk of ‘data-mining’, ‘p-hacking’, 
or ‘torturing the data until it confesses’ (Nuzzo 2015). 
In the approach to cyclostratigraphic analysis used in 
the Average Spectral Misfit (Meyers and Sageman, 
2007) and TimeOpt (Meyers 2019b) methods, the 
user is actively encouraged to experiment across a 
wide range of possible solutions until satisfied with 
the outcome (Graham Weedon, pers. comm.); such 
deliberate appeal to multiplicity must cast suspicion 
on such methods, which should be comprehensive-
ly tested with random datasets before being relied 
upon to analyse any real data.

The overall effect of all sources of multiplicity is 
the tendency to vastly expand the range of possi-
ble outcomes, making reliable calibration of confi-
dence thresholds impossible. The implication is par-
adoxical: treating CLs as flexible destroys any value 
they may originally have had; by treating them ‘as 
a guide’, they effectively cease to exist. The conven-
tional all-frequency calculation of CLs appears con-
venient, because it provides a test at any frequency. 
Yet it is highly misleading because, once a single-fre-
quency test has been conducted, the CL no longer ap-
plies at any other frequency in the same spectrogram 
without correction; the CET case (Figures 4 and 6) is 
an example.

For completeness, I mention one further modifier 
of confidence thresholds. Prior probability refers to 
the a priori likelihood of occurrence of any effect un-
der investigation. In cyclostratigraphy, there is a clear 
need to consider (in advance of analysis) the underly-
ing probability that the depositional system in ques-
tion is capable of recording climate change at orbital 
periodicities (Bailey 2009). As with medical diagnosis, 
the burden of proof is necessarily greater where the 
occurrence of the target effect is a priori less likely 
(Ioannidis 2005, Nuzzo 2014). There is surely potential 
for erecting a semi-quantitative scale (or at the very 
least, an ordinal scale) of depositional environments, 
from those least likely to preserve such a record to the 
most likely; such a scale might be difficult to apply, but 
would at least draw attention to this issue. Bayesian 
statistics is available to deal with the conditional prob-
abilities that arise from variable priors of this kind.
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Conclusions and recommendations 

My title suggests problems with the confidence lim-
its that routinely appear on cyclostratigraphic power 
spectra: Why are they so often calculated and plot-
ted, yet so rarely adhered to? Why have they been 
so strongly defended against technically correct 
criticism? Is it possible to clarify and resolve these 
differences? In this paper, I have identified technical 
problems with (1) the conventional, standardised na-
ture of power spectral analysis in cyclostratigraphy; 
(2) confusion over the role of hypotheses; and (3) the 
unavoidable impact of statistical multiplicity. These 
three are closely related to each other; reliance on 
conventionalised procedures has obscured the una-
voidable role of hypotheses in significance-testing, 
encouraging the spurious application of confirmato-
ry statistics in the ‘forking paths’ (high multiplicity) 
environment of exploratory-mode data analysis.

Resolution of the technical issues will be enabled 
by (1) avoiding the ‘black box’ calculations (mainly 
based on ML96) that automatically embellish every 
power spectrum with inappropriate noise models 
and confidence limits; (2) appreciation of the roles of 
scientific and statistical (null) hypotheses, and hence 
of the distinction between the exploratory (hypoth-
esis-forming) and confirmatory (hypothesis-testing) 
stages of data analysis; and (3) awareness of actual 
and potential sources of statistical multiplicity and 
their effect on confidence thresholds. 

The function of most cyclostratigraphic power 
spectra is necessarily exploratory; statistical tests are 
therefore not appropriate, and reliable confidence 
limits cannot be calculated. CLs should not be plotted 
unless they can be correctly calculated for a specific 
and explicit null hypothesis significance test; there is 
no such thing as a context-free confidence limit. ‘Black 
box’ software packages should carry appropriate 
warnings, and any cycle identifications that depend on 
conventionally calculated CLs should be challenged. 

In cases for which confirmatory statistical tests 
can be justified, based on a properly formulated null 
hypothesis, the risk of false positive cycle identifi-
cations (Type I errors) must be acknowledged and 
managed, not dismissed and ignored. False positive 
rates can generally be predicted; they should be con-
firmed using synthetic (random) datasets. Statistical 
tests must be allowed to ‘fail’; a null hypothesis that 
cannot be rejected must be accepted as evidence that 
a local peak is not statistically distinguishable from 
random. As in the Pliensbachian example above, this 
need not invalidate a conclusion of orbital cyclicity at 
that wavelength, but it does exclude statistical sup-
port.

Vaughan, Bailey and Smith (2011) showed that 
poorly fitting noise models can raise false positive 
rates. Their observations have now been accepted, 
and Weedon (this volume) has recently proposed a 
new and entirely empirical approach. Further work is 
needed on this and other methods, in order to estab-
lish model-fitting protocols for general application in 
cyclostratigraphy. 

Further research is also required into appropriate 
corrections for statistical multiplicity in cyclostratigra-
phy. I have kept to the Bonferroni correction in the ex-
amples herein (Figures 5 and 6), because it is intuitive, 
easy to apply, and conservative (which is appropriate 
for minimisation of Type I errors in random data, for 
example). Criticisms of this particular correction (e.g. 
Hilgen, Hinnov, Aziz et al. 2015; Hinnov, Wu and Fang 
2016), are fair but are not a reason for denial of the 
underlying need for multiplicity corrections. Cramp-
ton, Meyers, Cooper et al. (2018), and Weedon, Page 
and Jenkyns (2019) have now started to use and rec-
ommend other methods, particularly that proposed 
by Benjamini and Hochberg (1995), which is now very 
widely used in many other sciences. 

Standardisation of analytical procedure (from 
sampling to target specification) is highly desirable 
if statistical testing is to be reliable, especially for 
comparison between datasets; Weedon (this volume) 
has set a clear example in this regard. Protocols for 
a preferred approach to exploratory analysis, without 
any reference to statistics but with hypothesis-formu-
lation as the goal, would also be helpful.

If statistical significance is to be the basis of relia-
ble cycle-period identification, the procedure for the 
confirmatory (statistical) stage of analysis should be 
specified in advance, and should ideally be conduct-
ed on a new dataset, independent of that used for 
the exploratory stage; these are widely regarded as 
minimum standards in most applications of statistics 
(Munafò, Nosek, Bishop et al. 2017). The practice in 
cyclostratigraphy of relying on a single dataset both 
for proposing an orbital hypothesis and for invoking 
statistics to confirm it, risks circular reasoning (Bai-
ley 2009). It is unfortunate that cancellation of the 
second Mochras borehole has deprived cyclostra-
tigraphy of a rare opportunity to conduct rigorous 
confirmatory statistics on the essentially exploratory 
results from Mochras-1 (Ruhl, Hesselbo and Hinnov, 
2016). Cyclostratigraphers are unlikely to welcome 
the suggestion that they should collect and analyse 
every succession twice over, but such are the require-
ments of proper statistical practice.

There is considerable scope for the introduction 
of Bayesian statistics in cyclostratigraphy, where the 
method proposed by Vaughan (2010) has received little 
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attention. Weedon (this volume) makes a strong case 
for their use, and my plea for routine consideration of 
prior probabilities also requires Bayesian methods. 

Reproducibility is currently a major issue in many 
sciences (Munafò, Nosek, Bishop et al. 2017; National 
Academies of Sciences, Engineering, and Medicine, 
2019), and cyclostratigraphy should not be an excep-
tion to the absolute requirement that all data and meth-
ods should be completely open, and freely available. 

This contribution to cyclostratigraphy has neces-
sarily been critical, and could be interpreted as es-
sentially negative. However, astrochronology (and 
the geological time-scale) need and deserve a supply 
of dependable identifications of orbital cycle-periods 
in stratigraphic successions; the currently relaxed at-
titude to statistical testing in cyclostratigraphy does 
not achieve the required level of reliability. Thirty 
years since my first publication in cyclostratigraphy, 
this is likely to be my last; if I have succeeded in clar-
ifying (for some, at least) the role, the requirements, 
the operation, and the limitations of significance 
tests in power spectral analysis, then this contribu-
tion will – I hope – have been a positive one.
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